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For steady-state turbulent flows with unique mean properties, we determine a sense 
in which the mean velocity is linearly supercritical. The shear-turbulence literature 
on this point is ambiguous. As an example, we reassess the stability of mean profiles 
in turbulent Poiseuille flow. The Reynolds & Tiederman (1967) numerical study is 
used as a starting point. They had constructed a class of one-dimensional flows which 
included, within experimental error, the observed profile. Their numerical solutions 
of the resulting Orr-Sommerfeld problems led them to conclude that the Reynolds 
number for neutral infinitesimal disturbances was twenty-five times the Reynolds 
number characterizing the observed mean flow. They found also that the first 
nonlinear corrections were stabilizing. In the realized flow, this latter conclusion 
appears incompatible with the former. Hence, we have sought a more complete set 
of velocity profiles which could exhibit linear instability, retaining the requirement 
that the observed velocity profile is included in the set. We have added two 
dynamically generated modifications of the mean. The first addition is a fluctuation 
in the curvature of the mean flow generated by a Reynolds stress whose form is 
determined by the neutrally stable Orr-Sommerfeld solution. We find that this can 
reduce the stability of the observed flow by as much as a factor of two. The second 
addition is the zero-average downstream wave associated with the above Reynolds 
stress. The three-dimensional linear instability of this modification can even render 
the observed flow unstable. Those wave amplitudes that just barely will ensure 
instability of the observed flow are determined. The relation of these particular 
amplitudes to  the limiting conditions admitted by an absolute stability criterion for 
disturbances on the mean flow is found. These quantitative results from stability 
theory lie in the observationally determined Reynolds-Tiederman similarity scheme, 
and hence are insensitive to changes in Reynolds number. 

1. Introduction 

This study is an exploration of various mechanisms that affect the stability of 
statistical quantities in steady-state turbulent flow. An ultimate goal of such inquiry 
is to isolate the principal physical processes that determine the equilibration of the 
flow. 

Here we examine the traditional inhomogeneous steady-state problem of Poiseuille 
flow in channels. The geometry of the coordinate system to  describe this flow is given 
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FIQURE 1. The configuration for turbulent Poiseuille flow considered in this paper. 

in figure 1.  The velocity of the fluid, u is divided into a mean and fluctuating 
part : 

T 
u =  U+u, U=@, m = l i m l i  T ( )dt (1 .1)  

t*m 

The mean part is indicated by an overbar, and the overbar is taken in this context 
to be a local time-average of the flow. The time-averaged Navier-Stokes equation for 
the incompressible fluid being studied is written 

- VP u. v u+ u - vu +-- vv2u = 0,  (1.2) 
P 

while the corresponding equation for the fluctuating velocity u is 

a U  VP 
-+u  * vu+ u. vu+--vv2u = ( u . v u - u .  VU). 
a? P 

(1.3) 

The fluctuation-fluctuation interaction terms on the right-hand side of (1.3) play a 
disputed role in the overall energetics of the fluctuating field. 

In simplistic theories of turbulence these right-hand terms are treated as the 
source of ‘eddy viscosity ’. In more ornate statistical theories (e.g. Lagrangian 
History Direct Interaction Approximation, Kraichnan 1962), they act as stabilizing 
radiators of energy into wavenumber space. These terms have also been shown to be 
stabilizing in convection mean-field theories (Herring 1963, 1964 ; Claussen 1983), 
and upper-bound theories (Chan 1971). However, we also know that such terms 
can be destabilizing, at least in transient subcritical bifurcation of one-dimensional 
U-fields (Herbert 1980 ; Orszag & Patera 1981). If these fluctuation-fluctuation 
terms prove to be stabilizing, then the observed U-fields must be linearly unstable. 
We shall explore here how stable or unstable such fields actually are. 

2. Statistical stability 
For a function U(y) to represent the mean of a turbulent flow, isolated disturbances 

from that mean must eventually decay. This is a first sense in which the field U is 
stable. Also, observations indicate that U is a continuously changing function of the 
Reynolds number. Hence, beyond the laminar range the entire function U(y, R) is 
marginally stable. Tractable stability problems to determine the U = U(y, R) 
realized in experiment have been found for small-amplitude unstable flows which are 
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steady or periodic. However, previous stability studies for non-periodic flows rest on 
ad hoc assumptions. 

One possibility that can provide a quantitative indication of stable U-fields is 
the use of the dissipation-rate integral. Derived by multiplying (1.3) by us and 
averaging over the whole domain, it is 

a 
-( 424. u ) +  ( u  . u * 0 U ) - v  (us  V2u) = 0. 
a7 

This integral has lost the advective nonlinearity of the Orr-Sommerfeld-like 
operator of (1.3) and retains only the shear terms as the direct energy source for 
potential disturbances. Treated as a variational statement of an eigenvalue problem, 
it is known to give considerably lower bounds on the Reynolds number than is 
characteristic of laminar shear flow (Joseph 1976). It is also established that, treated 
as an integral constraint to determine upper bounds on momentum transfer (Busse 
1978), it gives bounds considerably in excess of those observed in turbulent flow. The 
reasons are rather clear. These problems have lost the essential constraint of 
travelling-wave solutions which are characteristic of ( 1.3). 

3. Stability boundaries for the mean-field disturbance equation 
In the spirit of an earlier paper by Reynolds & Tiederman (1967), here we plan a 

numerical exploration of the stability of a large class of functions treated as possible 
mean profiles U(y) and containing in the class a member indistinguishable from 
the observed profile. The Reynolds-Tiederman empirical two-parameter family of 
functions is augmented here by the infinite set of waves which are eigensolutions 
of the stability problems. 

The two-parameter family of functions chosen by Reynolds & Tiederman reflects 
much accumulated observational and theoretical experience on appropriate scaling 
for turbulent flows. A central part of this study is to determine how that presumed 
scaling is related to the stability properties. They chose to study the functions 

where 

1 -y/ 1 1 + E(y') dy'l 
U(y) = RB 

The (Van Driest) boundary-layer-like quantity A and the von Karman-like quantity 
K were the two parameters considered by Reynolds & Tiederman. They show that 
the choice A = 31, K = 0.4, leads to profiles within the experimental error of all 
observations made by J. Laufer, The quantity RB; is the friction Reynolds number, 
and appears in E(y) to reflect the observed scaling as the Reynolds number R 
becomes large. Here we shall test the preservation of this scaling as Reynolds stresses 
due to finite-amplitude waves alter the effective E(y). 

The linear stability problem for U(y, R), from (1.3) and (3.1), is written 

I++'.'" - 2a2y + a4$ = iaR*[(U( y, R) - C) ($"-a2$) - U"(y, R) $1. (3.4) 
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FIGURE 2. The neutral stability curve for the Orr-Sommerfeld equation using a family of profiles 
parametrized by the (A,K)-plane. The original results of Reynolds & Tiederman (1967) are 
illustrated by the dashed line. 

Reynolds & Tiederman sought the eigensolution 11. and values for a which led to a 
minimum R* for many members of the set U(y, R). Their purpose was to discover the 
particular values of A and K for which R*, the critical Reynolds number for 
instability, was equal to R, the profile Reynolds number. Their quantitative results 
were achieved by an ingenious mixture of analytic and numerical methods. 

We started our exploration by repeating the Reynolds-Tiederman linear stability 
study using a spectral method of high accuracy as implemented for laminar Poiseuille 
channel flow by Orszag (1971). The results of this effort are summarized in figure 2. 

Figure 2 is a curve in the (A, K)-plane, a t  a profile Reynolds number of 25000, of 
those (A, K)-values that led to an R* = 25000. To the right of the curve all ( A ,  K)- 
pairs are found to represent profiles stable to linear disturbances (R* > 25000), while 
all (A,K)-pairs to the left of the curve are unstable (R* < 25000). Reynolds & 
Tiederman’s earlier curve is indicated as a dashed line. They concluded, as must we, 
thqt the linear stability of the (A, K)-profiles does not determine the quantitative 
structure of turbulent channel flow, for the curve of marginal stability passes a t  a 
considerable distance from the observed (A ,  K ) .  In  addition, they suggested that the 
disturbances were supercritical where they were unstable. 

It is also clear from figure 2 that no unique (A ,  K )  is selected by the linear marginal 
stability process. It is not clear from figure 2 alone if the marginal curve is the same 
curve at other Reynolds numbers, that is, whether the linear stability process has the 
presumed scaling. 

The unresolved problems of scaling, profile selection, and the super- or sub- 
criticality of two- and three-dimensional disturbances are addressed in the following 
sections. Scaling studies require a considerable number of additional linear solutions 
at many profile Reynolds numbers. This task is simplified by properties of the 
Reynolds-Tiederman profile deduced in the next section. 
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K+K* = K($--. 
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FIUURE. 3. Projection of ( A ,  K)-pairs from the R- to the R*-plane. 

4. Asymptotic scaling 

such a way that if 
It is seen from (3.1), (3.2) and (3.3) that the profile U(y) depends on R, B, K ,  A in 

p = KRB~ (4.1) 

y = R B  (4.2) 

A r=-- 
R d ’  

are held fixed, the shape of U(y) is unaltered, and its normalization is preserved if 

is held fixed. These three constraints among four variables show that U is invariant 
with respect to the following transformation : 

(4.3) 

Each profile represented by a point ( A ,  K )  in the R-plane has associated with it a 
minimum marginal eigenvalue, R* (and an eigensolution @, a separation wave- 
number a, and a phase velocity c). This profile is transformed by (4.3) to a profile 
marginally stable in the R*-plane, i.e. the profile Reynolds number matches the 
minimum Reynolds number for marginal stability. Figure 3 indicates this 
relationship in a three-dimensional plot of ( A ,  K )  and R. The line of points defined by 
many (A*, K*) pairs on the R*-plane is the curve of marginal stability M * ,  If the 
linear stability process is related to the observed turbulent phenomena one would 
expect that the curve of marginal stability, M on the R-plane, asymptotically attains 
the shape of the curve M* as both R and R* become large. Equation (4.3) will help 
us to answer this question by permitting stability computations made on one R-plane 



440 G .  R. Ierley and W .  8. R. Malkus 

A 

10 

I 

1 

0.1 1 
K 

FIGURE 4. Shift in the neutral stability curve due to the addition of the Reynolds stress due to an 
Orr-Sommerfeld wave: solid line from the original (unmodified) profile; chain dot line from the 
mean flow plus the Reynolds stress. The black dot is the best fit to laboratory data. 

to be projected onto another. However, i t  is convenient to delay the report on the 
degree of R-dependence of the stability results until the finite-amplitude and three- 
dimensional stability problems are addressed. 

5. Finite-amplitude instability along the marginal curve 
Figure 2 exhibits the curve in the ( A ,  K)-plane that is marginally stable. However 

we find that the finite-amplitude behaviour of departures from that curve are 
subcritical, leading to an equilibration a t  a small finite amplitude very close to the 
plotted (A,K)-curve. For example, a point in the middle of the curve would be 
reduced from marginally stable on the R = 25000 plane to the R = 24000 plane. We 
believe this small-finite-amplitude behaviour is due to the inability of the ( A , K ) -  
plane to reflect the subtle structure of equilibrium profiles attained by the real flow. 
It is found, then, that the correction is very small except for the existence of a finite- 
amplitude wave associated with the marginally stable curve. 

The next step was to explore the modifications of the marginal curve as a 
consequence of finite distortion of the mean field due to the Reynolds stress of a wave 
whose structure was determined by the eigenvalue problem. Lengthy computation 
indicates that this effect is significant, but also not very large. The principal results 
of that study are contained in figure 4. There one can see that addition of the 
Reynolds stress produced by an Orr-Sommerfeld wave to the mean profile leads to 
a reduction in the critical Reynolds number R* to below the value it would have in 
the absence of such a modification. The curve drawn corresponds to a marginal 
inflexion in the flow and leads to a reduction of R* of about one-half of its original 
value. By inviscid theory, such a state lies on the border of instability. However, the 
magnitude of the local u, v wave velocities required to sustain an inflexion in the 
mean is uncomfortably large. The large dark point is the observed value of ( A , K ) .  

Figure 5 plots the original and modified curvature for K* = 0.08 and A* = 142.02. 
Figure 6 is a plot of the velocity deduced from the inflected curve and from the 
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FIGURE 5. Curvature of the original velocity profile (single peak) and modified velocity profile 
(double peak) due to the addition of the derivative of the Reynolds stress from a neutrally stable 
Orr-Sommerfeld solution. 
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FIGURE 6. The original velocity profile (upper curve) and modified velocity profile (lower curve) 
due to the addition of the Reynolds stress from a neutrally stable Orr-Sommerfeld solution. 

original curve indicating the very small change in the resultant structure. Actually 
the curve must be renormalized, since the integrated velocity in this representation 
is one. Having done that, the two curves would be essentially indistinguishable. 

We conclude then that, for wave amplitudes that are as large as one could 
reasonably expect on the mean field, the reduction in the critical Reynolds numbers 
still does not bring the marginal curve particularly near the observed point on the 
( A ,  K)-plane. 



442 G .  R. Ierley and W .  V .  R. Malkus 

0.1 1 
K 

FIQURE 7. Curves of marginal stability for a three-dimensional disturbance on a profile with a 
finite-amplitude two-dimensional wave field. From left to right the dashed curves represent neutral 
stability curves for maximal downstream velocities due to the wave of 5, 25 and 100 % of the local 
mean velocity. 

6. Three-dimensional instability of the two-dimensional wave 
In  the previous section we explored the effect on stability of the modification of 

the mean field only. Recent work by Orszag & Patera suggests the importance of the 
inertial instability of the two-dimensional wave associated with a finite-amplitude 
Orr-Sommerfeld solution. They established that three-dimensional instabilities were 
supercritical a t  the point of marginality and had inertial growth rates. In that study, 
the two-dimensional waves were presumed to be imposed on the flow by, perhaps, a 
vibrating ribbon or some other mechanism, or were an existing post-critical wave 
after bifurcation of the flow. Here a similar view can be taken, and the destabilizing 
effect of these waves of finite amplitude will be explored over the entire stable side of 
the ( A ,  K)-plane. We shall seek a value of wave amplitude appropriate to marginal 
three-dimensional instability in the entire region to the right of the marginal curve 
for the mean field. It is not clear that this is possible. There may be a saturation as 
far as the three-dimensional instability is concerned. I n  fact such a saturation was 
suggested by the work of Orszag & Patera. In particular it may be that the 
amplitudes required are totally unreasonable. Very shortly we shall assess absolute 
stability, in which the reasonableness of a presumed amplitude can be determined. 
In  our first explorations of this problem, we were deterred by the estimates of 
machine time needed for a reasonable search of the ( A ,  K)-plane. However, a reduced 
form of a three-dimensional algorithm due to Zaff (1987), generated in a study of 
narrow-gap Ekman flow, made use of an IBM 4381-Q02 feasible for determination 
of critical R* values for three-dimensional instability. 

Figure 7 indicates the curves of marginal three-dimensional instability for three 
different two-dimensional wave amplitudes. The curve to the right is for a maximum 
downstream velocity due to  the wave that is equal to the local mean velocity. For 
such a wave, the mean profile at the observed ( A ,  K)-point is quite unstable. The 
curve that passes nearly through the observed ( A ,  K )  is for a wave amplitude leading 
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to a maximum downstream velocity due to  the wave of 25% of the local mean 
velocity. The curve closest to the original marginal stability curve represents a 
velocity of 5%. These amplitudes are all a small fraction of that  needed t o  produce 
a marginal inflexion in the mean. The 100% amplitude corresponds to a total wave 
energy approximately 1 YO of the energy in the mean flow. 

Also observed was an unusual feature of the eigenvalue spectrum of three- 
dimensional modes in the vicinity of the observed point A = 30, K = 0.4 in the 
R = 5000 plane. It would appear that a t  this point, as many as 15 other vertical 
modes in eigenstructure are nearly neutrally stable a t  the same time that the 
principal vertical mode becomes unstable. This may relate to  selection mechanisms 
which we plan to explore in the near future. 

7. Absolute stability 
So far we have had no way of judging what amplitudes are permitted the real 

flow. It has been possible to choose appropriate two-dimensional wave amplitudes to 
assure mean flows unstable with respect to three-dimensional disturbances since the 
fluctuation field has been energetically unconstrained. In this section we address the 
problem of the absolute stability of disturbances of the scale of those generated by 
the instabilities. The goal is to rule out a range of (A,K)-space as energetically 
inaccessible to even the most determined three-dimensional disturbance. 

At first sight, constraining amplitude by use of absolute stability theory will 
appear paradoxical since it is a linear theory. Therefore, we begin with a review of 
the conventional treatment of absolute stability, and next describe a more relevant 
constrained absolute stability problem. Finally we present the results of an 
approximate solution to this constrained problem. 

The usual approach to  the determination of a rigorous lower stability bound on 
shearing flows, e.g. Joseph (1976), is based on the single dissipation-rate integral 
(2. i), the continuity condition, and the boundary conditions. The perturbation fields 
are only weakly constrained by that fraction of the full dynamics that is captured in 
the moment integral, and a lower bound for stability obtains from the variational 
problem 

( u - v2u+ u * Vh,)  
( U . U . V U >  ' 

Rabs = min 

where A, is a Lagrange multiplier (essentially the pressure field) chosen to enforce 
incompressibility. 

For laminar Poiseuille channel flow, Busse (1969) and Joseph & Carmi (1969) have 
shown that the minimum eigenvalue attains for a two-dimensional eigensolution 
which is independent of the downstream coordinate. The Euler-Lagrange equations 
then follow directly as 

where w( 1 )  = w'( +i) = u( _+i) = 0. (This system is easily solved as a two- 
component generalized eigenvalue system using a Chebyshev series expansion of the 

15 FLM 187 
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eigenfunctions. Newton's method to optimize the cross-stream wavenumber 
converges rapidly for nearly any initial estimate. Two tests on accuracy are 
available, plane Couette flow, and channel Poiseuille flow. Couette flow leads to an 
eigenvalue problem identical with that of thermal Boussinesq convection with rigid 
boundary conditions. Rescaling values of (u, R)  to compensate for a unit half-channel 
width in the shear-flow case, we reproduce the values for convection theory of 
(3.1 167, 1707.7545). Our result for laminar Poiseuille flow is (2.0442, 49.6035), 
corroborating the value found by Busse.) 

In turbulent Poiseuille flow the mean profile is dynamically sustained by Reynolds 
stresses due to any scales of motion. The smallest scale, determining the boundary 
region, is the most demanding energetically (Malkus 1956). It is the absolute stability 
of this scale we wish to establish. It is not evident whether this smallest scale is 
associated with two- or three-dimensional disturbances, but we find for the 
eigenstructures reported on earlier in the paper that the three-dimensional Reynolds 
stresses have a larger cross-stream scale than those produced by the two-dimensional 
wave field. Hence, we explore the absolute stability of the Orr-Sommerfeld wave 
scale which differs for each pair of values in the ( A ,  K)-plane. 

From the linear theory we determine the form of the local mean Orr-Sommerfeld 
Reynolds stress, =(A,  K, y ) ,  for a particular (A,K)-profile. We then require that the 
solution of the absolute stability problem have a Reynolds stress of identical form and 
impose this with an added Lagrange multiplier in the variational statement. 
Specifically, we seek the R satisfying 

( u  * v2u+u Vh,  +h,(y)(rn-u'v') ) Rabs = min 
Y ( u  * u .  VU) 

(7.3) 

The eigenvalue we obtain will equal the profile Reynolds number along some curve 
in the (A,K)-plane. In contrast to the linear marginal curve far to the left of the 
observed (A,  K ) ,  figure 2, this curve must lie to the right of the observed ( A ,  K)-point, 
for, of course, the observed point is permitted energetically. However, it  could turn 
out to be an even poorer bound of the realized instability than one finds in the 
laminar case. 

The Euler-Lagrange equations derived from (7.3) are a simple and interesting 
generalization of (7.2) : 

where w( _+ 1) = w'( & 1) = u( k 1) = 0. This problem appears to be novel in form, and 
we are unaware of any standard solution strategies. It requires the determination of 
an unknown coefficient function, A,(y), which will generate a (u, w)-pair satisfying st 
quadratic constraint. i- 

t It has a partial analogue in dynamo theory where a (u, w)-pair of two-dimensional fields are 
required to satisfy a quadratic integral constraint known as the Taylor constraint (Malkus & 
Proctor 1975). Only a few special solutions are known. 
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FIGURE 8. A comparison of t)he derivative of the Reynolds stress from sc..hions o the 
Orr-Sommerfeld equation (solid curve) with that from the constrained absolute stability problem 
(dashed curve). A first match of smallest scales has been produced by truncating the mean 
shear. 

As a first step in the determination of R,,, we have adopted an approximate 
approach. Equation (7.4) depends only on the shear in the mean profile, and not, as 
in the Orr-Sommerfeld problem, the curvature. The structure of (7.4) suggests a 
boundary-layer formulation. We reflect this aspect of the absolute stability problem 
by selecting a first A, as follows: 

We choose yc so as to satisfy the third equation in (7.4) as well as possible. I n  
practice, matching the derivative of the Reynolds stress is a more sensitive test, 
hence we have chosen yc so that the location of the maximum in the Reynolds stress 
derivative due to the optimal solution of the dissipation-rate integrals matches that 
of the Orr-Sommerfeld solution. We find yc is typically 90% of the distance to the 
peak in Reynolds-stress derivative determined from the Orr-Sommerfeld solution. 
Figure 8 exhibits such a match (the dashed curve is from the absolute stability 
solution). One knows for standard variational problems that the eigenvalues are 
correct to second order if the eigenfunctions are first-order accurate. It is not evident 
that  this holds when the constraint is only approximately satisfied, nonetheless, 
initial explorations suggest that  the exact eigensolution and eigenvalue of (7.4) will 
not differ qualitatively from the results reported here. 

The marginal curve of constrained absolute stability obtained in this first 
approximation is drawn on figure 9, as is the original linear marginal curve. It is far 
from that curve, as anticipated, and includes the observed ( A , K )  to its left as 
energetically possible. However this curve is remarkably close to  the observed ( A ,  K )  
and corresponds to a local downstream fluctuation velocity no larger than 
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FIGURE 9. The curve of marginal stability for the constrained absolute stability problem discussed 
in $ 7 .  Points to the left of the dotted line are energetically allowed and hence include the observed 
flow. 
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FIGURE 10. A superposition of all the stability results obtained in this paper. The original stability 
curve (solid line), the two-dimensional roduction (chain dot line), the three-dimensional reductions 
(dashed lines), and the bound provided by the constrained absolute stability results (dotted 
line). 

approximately 40% of the local mean value. It is encouraging that such a bound is 
close to the observations, and suggests that the three-dimensional instabilities of 
shear turbulence significantly relax the constraints on the release of shear energy 
inherent in the linear theory. 

In  figure 10 the entire family of stability results are combined. The linear 
marginally stable curve, the absolute marginally stable curve, and the three- 
dimensional marginally stable curves for maximum wave amplitudes of 5 YO, 25 %, 
and loo%, are all drawn on the same graph. 
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8. Insensitivity to changes in Reynolds number 
To some readers it may be surprising that the results established for this particular 

R = 25000 plane obtain more generally. Perhaps most unanticipated is that scaling 
of both the three-dimensional and the constrained absolute instabilities persists on 
this plane. This implies that the equilibrating process is intimately and intricately 
linked to the two- and three-dimensional instability mechanisms we explore here. 

This scaling is established using a formulation of (3.3) to project from other planes 
onto this 25000 plane. The errors are less than 10% even for original points on the 
marginal curve corresponding to Reynolds numbers of a few thousand. To illustrate 
this we sketch the process of scaling for a few representative points. For clarity, we 
recall here the scaling results from (4.3) : 

For two-dimensional disturbances we take as an example the point K = 0.12, 
A = 95, which for a profile Reynolds number R of 25000 is neutrally stable a t  a = 3.8 
and R* = 50500 (where R* is the coefficient in the Orr-Sommerfeld equation). 
Equation (4.3) is used to refer this ( A ,  K)-pair to a profile of identical shape function, 
but with R = 50500. We obtain K = 0.084, A = 135. The marginal stability curve 
passes through this coordinate pair and lies in the R = R* = 50500 plane. It can be 
compared with the independent result K = 0.080, A = 142 found for the 
R = R* = 25000 plane. We see a shift by about 5 % towards the observational data 
by doubling the Reynolds number. It is possible that this curve simply continues to 
creep ever closer to the observed data, but we suggest a 5% change for a 2 : 1  
variation in R is evidence for the existence of an asymptotic limit that does not differ 
qualitatively from the results given here for R = 25000. 

For three-dimensional disturbances, we consider the point K = 0.12, A = 95, and 
R = 25000, which is neutrally stable at  R* = 1720 for p = 2.65 when a two- 
dimensional wave field is used whose maximum local downstream velocity is 25 YO of 
the local mean. As a projected (A,K)-pair in the R = R* = 1720 plane, this yields 
(0.46, 24.8). If we begin with K = 0.08, A = 142, and R = 25000, the corresponding 
three-dimensional instability result maps onto (0.40, 28.6) in the R = R* = 825 
plane. This shift of about 15Y0 in the direction of greater stability suggests that 
asymptotic two-dimensional wave amplitudes of less than 25 YO are adequate for 
three-dimensional marginal stability. 

For the constrained absolute stability problem, projections of the same initial 
( A ,  K)-pair give K = 0.59, A = 19.2 for R = R* = 1030, and K = 0.57, A = 20.0 for 
R = R* = 495, a shift of only 4% away from the observed point. Interestingly 
enough, laminar plane Poiseuille flow, which is linearly unstable with respect to two- 
dimensional disturbances at  a Reynolds number of 5772.22, has a constrained 
absolute stability eigenvalue of 175.95, representing reduction by a factor 
comparable with the values above. 

The six points connected with a solid smooth curve do all lie in the R = R* = 25000 
plane, but subsequent shifted curves connect points which do not all lie in the 
same R = R* plane. This procedure is appropriate to the degree that the results are 
asymptotic and independent, therefore, of R and R*. As numerical results in this 
section illustrate, variations in the appearance of figures 4, 7 ,  9 and 10 a t  a higher R 
would be slight. We believe that the qualitative features are robust, but parallelism, 
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or slight departures therefrom, in adjacent curves should be interpreted as yet with 
caution. We hope to continue these studies with greater resolution of scale so that 
higher Reynolds numbers the degree to which these marginal curves do become 
asymptotic can be fully established. It is not impossible that some small logarithmic 
dependence on R remains; however it is below the level that we can deal with a t  
present. 

9. Conclusion 
We conclude that, in a properly chosen Galilean frame, there is a time-independent 

mean flow, indistinguishable from the observed mean flow a t  arbitrarily large R, 
which is unstable to three-dimensional disturbances. It is also established that this 
flow is very close to the constrained absolute stability limit. It is most plausible then 
that both two-dimensional and three-dimensional linear instabilities play a central 
role in the physics of the statistically stationary turbulent field. 

However the selective mechanisms (i.e. which A and K 2 )  are not addressed here. 
They are not immediately visible in the graphical results. It may be that the 
simultaneous instability at many different scales of motion, found for the three- 
dimensional disturbances near the observed profile, is the determining feature. This 
path to turbulence would suggest a significant link with the more elementary 
dynamical systems whose connection with shear-flow turbulence has so far been more 
assertive than deductive. Although the empirical ( A ,  K)-frame is inadequate for the 
exploration of marginality a t  all scales, it has simple integral properties which may 
provide guidance for further inquiry. One such property is the ratio of the fluctuation 
dissipation rate to the dissipation rate of the mean, uniquely determinable a t  each 
(A,K)-point. Figure 11 is a plot of this ratio, which exhibits extreme values on the 
marginal stability curves near the experimental values of ( A , K ) .  The properties of 
this extreme found from the general Euler-Lagrange model of the flow and (2.1) are 
being studied. 

Present work suggests that a two-dimensional mean field can serve as a good first- 
order description of moments of the turbulent flow. I n  this paper, the solution of 
the equation for the full mean field has not been addressed. For that purpose, the 
Reynolds-Tiederman family of profiles has served as a substitute ; however, 
consistent with a mean-field description, the fluctuation fields we have treated are 
governed by a linear Orr-Sommerfeld equation. Our sequence of numerical 
experiments with a freely chosen amplitude for the two-dimensional wave field 
show good agreement with observational data for reasonable wave amplitudes. 
Establishing this result as the solution of a complete two-dimensional mean-field 
problem is the first challenging problem emerging from this work. It is encouraging 
and intriguing that the energetic bound determined from the absolute stability of the 
smallest scale should also lie so close. It suggests a novel sense in which shear-flow 
turbulence manages to achieve that coalescene of absolute and marginal stability 
boundaries characteristic of the linear convection problem. 

Solution of the mean-field problem will have both a rich spatial and temporal 
structure. Indeed, establishing contact with the detailed and more mechanistic 
studies of local bursts is an important goal. However, each facet of this new class of 
mean-field problems appears to be non-chaotic. Establishing in what sense a global 
description can capture the complex symbiotic relationship of two-dimensional and 
three-dimensional waves, which we believe governs the dynamics of bursts, is central 
in understanding both the limits of validity of a mean-field theory and the 
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FIGURE 1 1 .  Contours of the logarithm of the ratio of fluctuation dissipation to mean dissipation at 
a profile Reynolds number of 25000. Note the occurrence of a maximum of this quantity along each 
of the neutral stability curves in the vicinity of the observed flow. The contour interval is 0.616, 
and the function increases to the right. 

importance of fluctuation-fluctuation corrections. We are embarked on such study 
a t  this time. 
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